网络分析法
1.什么是网络分析法[1]
网络分析法(ANP)是美国匹兹堡大学的T.L.Saaty教授于1996年提出的一种适应非独立的递阶层次结构的决策方法,它是在层次分析法(Analytic Hierarchy Process,简称AHP)的基础上发展而形成的一种新的实用决策方法。
AHP作为一种决策过程,它提供了一种表示决策因素测度的基本方法。这种方法采用相对标度的形式,并充分利用了人的经验和判断力。在递阶层次结构下,它根据所规定的相对标度—比例标度,依靠决策者的判断,对同一层次有关元素的相对重要性进行两两比较,并按层次从上到下合成方案对于决策目标的测度。这种递阶层次结构虽然给处理系统问题带来了方便,同时也限制了它在复杂决策问题中的应用。在许多实际问题中,各层次内部元素往往是依赖的C低层元素对高层元素亦有支配作用,即存在反馈。此时系统的结构更类似于网络结构。网络分析法正是适应这种需要,由AHP延伸发展得到的系统决策方法。
ANP首先将系统元素划分为两大部分:第一部分称为控制因素层,包括问题目标及决策准则。所有的决策准则均被认为是彼此独立的,且只受目标元素支配。控制因素中可以没有决策准则,但至少有一个目标。控制层中每个准则的权重均可用AHP方法获得。第二部分为网络层,它是由所有受控制层支配的元素组组成的C其内部是互相影响的网络结构,它是由所有受控制层支配的元素组成的,元素之间互相依存、互相支配,元素和层次间内部不独立,递阶层次结构中的每个准则支配的不是一个简单的内部独立的元素,而是一个互相依存,反馈的网络结构。控制层和网络层组成为典型ANP层次结构,见下图。
2.网络分析法的特点[2]
AHP通过分析影响目标的一系列因素,比较其相对重要性,最后选出得分最高的方案即为最优方案。Harker和Vargas曾经这样评价AHP:“AHP是一套复杂的评价系统,当我们进行多目标、多准则以及多评委的决策时,面对众多的可选方案,AHP能够用来解决各种量化和非量化、理性与非理性的决策问题。”AHP简单易用,其缜密的理论基础决定了它能解决各种实际问题。AHP模型使各决策层之间相互联系,并能推出跨层次之间的相互关系。模型的顶层为企业的总目标,然后逐层分解成各项具体的准则、子准则等,直到管理者能够量化各子准则的相对权重为止。
层次分析法能够为决策者解决各种复杂系统问题,但它也存在一些缺憾。例如,AHP就未能考虑到不同决策层或同一层次之间的相互影响,AHP模型只是强调各决策层之间的单向层次关系,即下一层对上一层的影响。但在实际工作中对总目标层进行逐层分解时,时常会遇到各因素交叉作用的情况。如一个项目的不同研究阶段对各评委的权重是不同的;同样,各评委在项目研究的不同阶段对各评价指标的打分也会发生变化。这时,AHP模型就显得有些无能为力了。
网络分析法的特点就是,在层次分析法的基础上,考虑到了各因素或相邻层次之间的相互影响,利用“超矩阵”对各相互作用并影响的因素进行综合分析得出其混合权重。而ANP模型并不要求像AHP模型那样有严格的层次关系,各决策层或相同层次之间都存在相互作用,用双箭头表示层次间的相互作用关系。若是同一层中的相互作用就用双循环箭头表示。箭头所指向的因素影响着箭尾的决策因素。基于这一特点,ANP越来越受到决策者的亲睐,成为企业在对许多复杂问题进行决策的有效工具。ANP中各因素的相对重要性指标的确定与AHP基本相同。各因素的相对重要性指标(标度)是通过对决策者进行问卷调查得到的,但有时也会出现一些不一致的现象(如I与H比,标度为3;J与K比,标度为5;而I与K比,标度为6)。