模拟退火算法
1.什么是模拟退火算法
模拟退火算法(Simulate Anneal Arithmetic,SAA)是一种通用概率演算法,用来在一个大的搜寻空间内找寻命题的最优解。模拟退火是S.Kirkpatrick, C.D.Gelatt和M.P.Vecchi在1983年所发明。而V.Černý在1985年也独立发明此演算法。模拟退火算法是解决TSP问题的有效方法之一。
模拟退火来自冶金学的专有名词退火。退火是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。
模拟退火的原理也和金属退火的原理近似:将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。演算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。
2.模拟退火算法的模型[1]
模拟退火算法可以分解为解空间、目标函数和初始解三部分。
- 模拟退火的基本思想:
- (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L
- (2) 对k=1,……,L做第(3)至第6步:
- (3) 产生新解S′
- (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
- (5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
- (6) 如果满足终止条件则输出当前解作为最优解,结束程序。终止条件通常取为连续若干个新解都没有被接受时终止算法。
- (7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:
- 模拟退火算法新解的产生和接受可分为如下四个步骤:
- 第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
- 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
- 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropolis准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
- 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。
模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。
3.模拟退火算法求解TSP问题的伪程序[1]
根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序:
Procedure TSPSA: begin init-of-T; { T为初始温度} S={1,……,n}; {S为初始值} termination=false; while termination=false begin for i=1 to L do begin generate(S′form S); { 从当前回路S产生新回路S′} Δt:=f(S′))-f(S);{f(S)为路径总长} IF(Δt<0) OR (EXP(-Δt/T)>Random-of-[0,1]) S=S′; IF the-halt-condition-is-TRUE THEN termination=true; End; T_lower; End; End
模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem)、0-1背包问题(Zero One Knapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(Scheduling Problem)等等。