新材料
1.什么是新材料
新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、 材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。
2.新材料的内涵
1.运用新概念,新方法和新技术,合成或制备出具有高性能或具有特殊功能的新材料。如碳纤维可以说是一种全新概念的新材料,用聚丙烯腈原丝经过专门的碳化工艺制备而成。
2.对传统材料的再开发,使性能获得重大的改进和提高。如纳米改性、稀土改性等。工程塑料改性目前较活跃,品种增多,性能不断提高。
3.新材料的战略定位
包括:功能定位、方向定位、技术定位和市场定位
1.功能定位:一种基础性和支柱性战略产业,是现代高新技术和产业的基础和先导。材料的突破将有可能引发新的产业性革命。
2.方向定位:围绕国民经济发展和重大工程需求,发展新能源、新一代信息技术、生物材料、航空航天、新能源汽车和现代交通、节能环保等重点领域的新兴材料,包括:新型功能材料、高性能结构材料及科技前沿性的基础材料。
新型功能材料:
稀土功能材料、新型膜材料、陶瓷功能材料、半导体照明材料及新型功能高分子材料等。
高性能结构材料:
高品质特殊钢材、新型合金、新型工程塑料、高性能复合材料(碳纤维复合材料)。
科技前沿基础材料:
3.技术定位:发展具有自主知识产权的关键材料与技术,提高自主创新能力,形成我国新材料产业发展的科技创新体系和产业规模。
4.市场定位:主要满足国民经济和国防建设的重大需求。瞄准国际化的高新技术高端市场,具有高技术含量、高附加值、高性价比。
4.新材料的类型
1.复合新材料
复合新材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力,在国内思嘉新材料开发的复合新材料代表了国内的较高水平。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。
2.超导材料
有些材料当温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。超导体的另外一个特征是:当电阻消失时,磁感应线将不能通过超导体,这种现象称为抗磁性。
一般金属(例如:铜)的电阻率随温度的下降而逐渐减小,当温度接近于0K时,其电阻达到某一值。而1919年荷兰科学家昂内斯用液氦冷却水银,当温度下降到4.2K(即-269℃)时,发现水银的电阻完全消失,
超导电性和抗磁性是超导体的两个重要特性。使超导体电阻为零的温度称为临界温度(TC)。超导材料研究的难题是突破“温度障碍”,即寻找高温超导材料。
以NbTi、Nb3Sn为代表的实用超导材料已实现了商品化,在核磁共振人体成像(NMRI)、超导磁体及大型加速器磁体等多个领域获得了应用;SQUID作为超导体弱电应用的典范已在微弱电磁信号测量方面起到了重要作用,其灵敏度是其它任何非超导的装置无法达到的。但是,由于常规低温超导体的临界温度太低,必须在昂贵复杂的液氦(4.2K)系统中使用,因而严重地限制了低温超导应用的发展。
高温氧化物超导体的出现,突破了温度壁垒,把超导应用温度从液氦(4.2K)提高到液氮(77K)温区。同液氦相比,液氮是一种非常经济的冷媒,并且具有较高的热容量,给工程应用带来了极大的方便。另外,高温超导体都具有相当高的磁性能,能够用来产生20T以上的强磁场。
超导材料最诱人的应用是发电、输电和储能。利用超导材料制作超导发电机的线圈磁体,可以将发电机的磁场强度提高到5~6万高斯,而且几乎没有能量损失,与常规发电机相比,超导发电机的单机容量提高5~10倍,发电效率提高50%;超导输电线和超导变压器可以把电力几乎无损耗地输送给用户,据统计,目前的铜或铝导线输电,约有15%的电能损耗在输电线上,在中国每年的电力损失达1000多亿度,若改为超导输电,节省的电能相当于新建数十个大型发电厂;超导磁悬浮列车的工作原理是利用超导材料的抗磁性,将超导材料置于永久磁体(或磁场)的上方,由于超导的抗磁性,磁体的磁力线不能穿过超导体,磁体(或磁场)和超导体之间会产生排斥力,使超导体悬浮在上方。利用这种磁悬浮效应可以制作高速超导磁悬浮列车,如上海浦东国际机场的高速列车;用于超导计算机,高速计算机要求在集成电路芯片上的元件和连接线密集排列,但密集排列的电路在工作时会产生大量的热量,若利用电阻接近于零的超导材料制作连接线或超微发热的超导器件,则不存在散热问题,可使计算机的速度大大提高。
3.能源材料
能源材料主要有太阳能电池材料、储氢材料、固体氧化物电池材料等。
太阳能电池材料是新能源材料,IBM公司研制的多层复合太阳能电池,转换率高达40%。
氢是无污染、高效的理想能源,氢的利用关键是氢的储存与运输,美国能源部在全部氢能研究经费中,大约有50%用于储氢技术。氢对一般材料会产生腐蚀,造成氢脆及其渗漏,在运输中也易爆炸,储氢材料的储氢方式是能与氢结合形成氢化物,当需要时加热放氢,放完后又可以继续充氢的材料。目前的储氢材料多为金属化合物。如LaNi5H、Ti1.2Mn1.6H3等。
固体氧化物燃料电池的研究十分活跃,关键是电池材料,如固体电解质薄膜和电池阴极材料,还有质子交换膜型燃料电池用的有机质子交换膜等。
4.智能材料
智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一。国外在智能材料的研发方面取得很多技术突破,如英国宇航公司的导线传感器,用于测试飞机蒙皮上的应变与温度情况;英国开发出一种快速反应形状记忆合金,寿命期具有百万次循环,且输出功率高,以它作制动器时、反应时间仅为10分钟;形状记忆合金还已成功在应用于卫星天线等、医学等领域。
另外,还有压电材料、磁致伸缩材料、导电高分子材料、电流变液和磁流变液等智能材料驱动组件材料等功能材料。
5.磁性材料
磁性材料可分为软磁材料和硬磁材料二类。
(1)软磁材料
是指那些易于磁化并可反复磁化的材料,但当磁场去除后,磁性即随之消失。这类材料的特性标志是:磁导率(μ=B/H)高,即在磁场中很容易被磁化,并很快达到高的磁化强度;但当磁场消失时,其剩磁很小。这种材料在电子技术中广泛应用于高频技术。如磁芯、磁头、存储器磁芯;在强电技术中可用于制作变压器、开关继电器等。目前常用的软磁体有铁硅合金、铁镍合金、非晶金属。
Fe-(3%~4%)Si的铁硅合金是最常用的软磁材料,常用作低频变压器、电动机及发电机的铁芯;铁镍合金的性能比铁硅合金好,典型代表材料为坡莫合金(Permalloy),其成分为79%Ni-21%Fe,坡莫合金具有高的磁导率(磁导率μ为铁硅合金的10~20倍)、低的损耗;并且在弱磁场中具有高的磁导率和低的矫顽力,广泛用于电讯工业、电子计算机和控制系统方面,是重要的电子材料;非晶金属(金属玻璃)与一般金属的不同点是其结构为非晶体。它们是由Fe、Co、Ni及半金属元素B、Si所组成,其生产工艺要点是采用极快的速度使金属液冷却,使固态金属获得原子无规则排列的非晶体结构。非晶金属具有非常优良的磁性能,它们已用于低能耗的变压器、磁性传感器、记录磁头等。另外,有的非晶金属具有优良的耐蚀性,有的非晶金属具有强度高、韧性好的特点。
(2)永磁材料(硬磁材料)
永磁材料经磁化后,去除外磁场仍保留磁性,其性能特点是具有高的剩磁、高的矫顽力。利用此特性可制造永久磁铁,可把它作为磁源。如常见的指南针、仪表、微电机、电动机、录音机、电话及医疗等方面。永磁材料包括铁氧体和金属永磁材料两类。
铁氧体的用量大、应用广泛、价格低,但磁性能一般,用于一般要求的永磁体。
金属永磁材料中,最早使用的是高碳钢,但磁性能较差。高性能永磁材料的品种有铝镍钴(Al-Ni-Co)和铁铬钴(Fe-Cr-Co);稀土永磁,如较早的稀土钴(Re-Co)合金(主要品种有利用粉末冶金技术制成的SmCo5和Sm2Co17),以及现在广泛采用的铌铁硼(Nb-Fe-B)稀土永磁,铌铁硼磁体不仅性能优,而且不含稀缺元素钴,所以很快成为目前高性能永磁材料的代表,已用于高性能扬声器、电子水表、核磁共振仪、微电机、汽车启动电机等。
6.纳米材料
纳米本是一个尺度,纳米科学技术是一个融科学前沿的高技术于一体的完整体系,它的基本涵义是在纳米尺寸范围内认识和改造自然,通过直接操作和安排原子、分子创新物质。纳米科技主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学七个方面。
纳米材料是纳米科技领域中最富活力、研究内涵十分丰富的科学分支。用纳米来命名材料是20世纪80年代,纳米材料是指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸最多不超过100纳米。纳米材料的制备与合成技术是当前主要的研究方向,虽然在样品的合成上取得了一些进展,但至今仍不能制备出大量的块状样品,因此研究纳米材料的制备对其应用起着至关重要的作用。